Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Am J Transplant ; 22(11): 2637-2650, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1927553

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has been associated with a high risk of adverse outcomes in solid organ transplant (SOT) recipients in the pre-vaccination era. In this retrospective cohort study, we examined the incidence and severity of COVID-19 in kidney and liver transplant recipients in Denmark in the post-vaccination era, from December 27, 2020, to December 27, 2021. We included 1428 SOT recipients with 143 cases of first-positive SARS-CoV-2 PCR test. The cumulative incidence of first-positive SARS-CoV-2 PCR test 1 year after initiation of vaccination was 10.4% (95% CI: 8.8-12.0), and the incidence was higher in kidney than in liver transplant recipients (11.6% [95% CI: 9.4-13.8] vs. 7.4% [95% CI: 5.1-9.8], p = .009). After the first-positive SARS-CoV-2 PCR test, the hospitalization rate was 31.5% (95% CI: 23.9-39.1), and 30-day all-cause mortality was 3.7% (95% CI: 0.5-6.8). Hospitalization was lower in vaccinated than in unvaccinated SOT recipients (26.4% [95% CI: 18.1-34.6] vs. 48.5% [95% CI: 31.4-65.5], p = .011), as was mortality (1.8% [95% CI: 0.0-4.3] vs. 9.1% [95% CI: 0.0-18.9], p = .047). In conclusion, SOT recipients remain at high risk of adverse outcomes after SARS-CoV-2 infections, with a lower risk observed in vaccinated than in unvaccinated SOT recipients.


Subject(s)
COVID-19 , Kidney Transplantation , Organ Transplantation , Humans , COVID-19/epidemiology , SARS-CoV-2 , Incidence , Retrospective Studies , Kidney Transplantation/adverse effects , Organ Transplantation/adverse effects , Transplant Recipients , Vaccination , Liver , Denmark/epidemiology
2.
APMIS ; 129(7): 438-451, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1291686

ABSTRACT

The COVID-19 pandemic has led to an unprecedented demand for real-time surveillance data in order to inform critical decision makers regarding the management of the pandemic. The aim of this review was to describe how the Danish national microbiology database, MiBa, served as a cornerstone for providing data to the real-time surveillance system by linkage to other nationwide health registries. The surveillance system was established on an existing IT health infrastructure and a close network between clinical microbiologists, information technology experts, and public health officials. In 2020, testing capacity for SARS-CoV-2 was ramped up from none to over 10,000 weekly PCR tests per 100,000 population. The crude incidence data mirrored this increase in testing. Real-time access to denominator data and patient registries enabled adjustments for fluctuations testing activity, providing robust data on crude SARS-CoV-2 incidence during the changing diagnostic and management strategies. The use of the same data for different purposes, for example, final laboratory reports, information to the public, contact tracing, public health, and science, has been a critical asset for the pandemic response. It has also raised issues concerning data protection and critical capacity of the underlying technical systems and key resources. However, even with these limitations, the setup has enabled decision makers to adopt timely interventions. The experiences from COVID-19 may motivate a transformation from traditional indicator-based public health surveillance to an all-encompassing information system based on access to a comprehensive set of data sources, including diagnostic and reference microbiology.


Subject(s)
COVID-19/prevention & control , SARS-CoV-2 , Basic Reproduction Number , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Databases, Factual , Denmark/epidemiology , Electronics , Health Care Sector , Humans , Registries
3.
Acta Anaesthesiol Scand ; 65(9): 1345-1350, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1280261

ABSTRACT

BACKGROUND: Superinfection following viral infection is a known complication, which may lead to longer hospitalisation and worse outcome. Empirical antibiotic therapy may prevent bacterial superinfections, but may also lead to overuse, adverse effects and development of resistant pathogens. Knowledge about the incidence of superinfections in intensive care unit (ICU) patients with severe Coronavirus Disease 2019 (COVID-19) is limited. METHODS: We will conduct a nationwide cohort study comparing the incidence of superinfections in patients with severe COVID-19 admitted to the ICU compared with ICU patients with influenza A/B in Denmark. We will include approximately 1000 patients in each group from the time period of 1 October 2014 to 30 April 2019 and from 10 March 2020 to 1 March 2021 for patients with influenza and COVID-19, respectively. The primary outcome is any superinfection within 90 days of admission to the ICU. We will use logistic regression analysis comparing COVID-19 with influenza A/B after adjustment for relevant predefined confounders. Secondarily, we will use unadjusted and adjusted logistic regression analyses to assess six potential risk factors (sex, age, cancer [including haematological], immunosuppression and use of life support on day 1 in the ICU) for superinfections and compare outcomes in patients with COVID-19 with/without superinfections, and present descriptive data regarding the superinfections. CONCLUSION: This study will provide important knowledge about superinfections in ICU patients with severe COVID-19.


Subject(s)
COVID-19 , Influenza, Human , Superinfection , Cohort Studies , Denmark/epidemiology , Humans , Influenza, Human/complications , Influenza, Human/epidemiology , Intensive Care Units , SARS-CoV-2 , Superinfection/epidemiology
4.
J Clin Microbiol ; 59(5)2021 04 20.
Article in English | MEDLINE | ID: covidwho-1195815

ABSTRACT

Serological assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are needed to support clinical diagnosis and epidemiological investigations. Recently, assays for large-scale detection of total antibodies (Ab), immunoglobulin G (IgG), and IgM against SARS-CoV-2 antigens have been developed, but there are limited data on the diagnostic accuracy of these assays. This study was a Danish national collaboration and evaluated 15 commercial and one in-house anti-SARS-CoV-2 assays in 16 laboratories. Sensitivity was evaluated using 150 samples from individuals with asymptomatic, mild, or moderate COVID-19, nonhospitalized or hospitalized, confirmed by nucleic acid amplification tests (NAAT); samples were collected 13 to 73 days either from symptom onset or from positive NAAT (patients without symptoms). Specificity and cross-reactivity were evaluated in samples collected prior to the SARS-CoV-2 epidemic from >586 blood donors and patients with autoimmune diseases, cytomegalovirus or Epstein-Barr virus infections, and acute viral infections. A specificity of ≥99% was achieved by all total-Ab and IgG assays except one, DiaSorin Liaison XL IgG (97.2%). Sensitivities in descending order were Wantai ELISA total Ab (96.7%), CUH-NOVO in-house ELISA total Ab (96.0%), Ortho Vitros total Ab (95.3%), YHLO iFlash IgG (94.0%), Ortho Vitros IgG (93.3%), Siemens Atellica total Ab (93.2%), Roche Elecsys total Ab (92.7%), Abbott Architect IgG (90.0%), Abbott Alinity IgG (median 88.0%), DiaSorin Liaison XL IgG (median 84.6%), Siemens Vista total Ab (81.0%), Euroimmun/ELISA IgG (78.0%), and Snibe Maglumi IgG (median 78.0%). However, confidence intervals overlapped for several assays. The IgM results were variable, with the Wantai IgM ELISA showing the highest sensitivity (82.7%) and specificity (99%). The rate of seropositivity increased with time from symptom onset and symptom severity.


Subject(s)
Antibodies, Viral/isolation & purification , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Immunoassay , Cytomegalovirus Infections , Enzyme-Linked Immunosorbent Assay , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Humans , Immunoglobulin G/isolation & purification , Immunoglobulin M/isolation & purification , Laboratories , SARS-CoV-2 , Sensitivity and Specificity
5.
J Virol Methods ; 289: 114062, 2021 03.
Article in English | MEDLINE | ID: covidwho-1019346

ABSTRACT

BACKGROUND: Diagnostic real time reverse transcription PCR (rRT-PCR) is usually done using nucleic acid (NA) purified from the sample. In the SARS-CoV-2 pandemic reagents and utensils for NA purification has been in short supply. This has generated interest in methods that eliminate the need for NA purification. OBJECTIVES: To investigate if addition of detergent to rRT-PCR master mix (MM) enabled in-well direct lysis and detection of SARS-CoV-2 in clinical eSwab specimens. STUDY DESIGN: IGEPAL-CA-630 (IGEPAL) was added to SARS-CoV-2 MM to 0.3 % final concentration and crude sample was added directly to the PCR well containing MM. Cycle of positivity (Cp) and categorical agreement was compared in samples tested in standard rRT-PCR after NA purification and in in-well lysis, direct rRT-PCR. RESULTS: In-well lysis direct rRT-PCR detected SARS-CoV-2 in 27/30 previously SARS-CoV-2+ samples with an average bias of 3.26 cycles (95 %CI: 0.08-6.43 cycles). All 30 previously test negative samples remained negative when tested in in-well lysis, direct PCR. CONCLUSIONS: Supplementation of detergent to MM was shown to be useful for the detection of SARS CoV-2 in eSwab specimens (COPAN) by direct rRT-PCR without prior NA purification.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , Specimen Handling/methods , Detergents/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL